Sunday, July 12, 2015

The Gricean Maxims

When we converse with one another, we implicitly obey a principle of cooperation, according to language philosopher Paul Grice's theory of conversational implicature.

This 'cooperative principle' has four maxims, which although stated as commands are intended to be descriptions of specific rules that we follow—and expect others will follow—in conversation:

  • quality: Be truthful.
  • quantity: Don't say more or less than is required.
  • relation: Be relevant.
  • manner: Be clear and orderly.

I was drawn recently to these maxims (and to Grice's theory) because they rather closely resemble four principles of instructional explanation that I have been toying with off and on for over a decade now: precision, clarity, order, and cohesion.

In fact, there is a fairly snug one-to-one correspondence among our respective principles, a relationship which is encouraging to me precisely because it is coincidental. Here they are in an order corresponding to the above:

  • precision: Instruction should be accurate.
  • cohesion: Group related ideas.
  • clarity: Instruction should be understandable and present to its audience.
  • order: Instruction should be sequenced appropriately.

Both sets of principles likely seem dumbfoundingly obvious, but that's the point. As principles (or maxims), they are footholds on the perimeters of complex ideas—in Grice's case, the implicit contexts that make up the study of pragmatics; in my case (insert obligatory note that I am not comparing myself with Paul Grice), the explicit "texts" that comprise the content of our teaching and learning.

The All-Consuming Clarity Principle

Frameworks like these can be more than just armchair abstractions; they are helpful scaffolds for thinking about the work we do. Understanding a topic up and down the curriculum, for example, can help us represent it more accurately in instruction. We can think about work in this area as related specifically to the precision principle and, in some sense, as separate from (though connected to) work in other areas, such as topic sequencing (order), explicitly building connections (cohesion), and motivation (clarity).

But principle frameworks can also lift us to some height above this work, where we can find new and useful perspectives. For instance, simply having these principles, plural, in front of us can help us see—I would like to persuade you to see—that "clarity," or in Grice's terminology, "relevance," is the only one we really talk about anymore, and that this is bizarre given that it's just one aspect of education.

The work of negotiating the accuracy, sequencing, and connectedness of instruction drawn from our shared knowledge has been largely outsourced to publishers and technology startups and Federal agencies, and goes mostly unquestioned by the "delivery agents" in the system, whose role is one of a go-between, tasked with trying to sell a "product" in the classroom to student "customers."

Let's Talk About Something Besides How to "Sell" Content

I would like to devote more of my time thinking about explanation, with reference to the principles and possibly to Grice's maxims (in addition to other related theoretical frameworks). Perhaps a new notebook, similar to this one is the best route. Maybe one of these days I'll even write that book that has been writing itself in my brain for the past 10 years or so.

I'm not quite sure how to begin and what structure I should use to help maintain momentum. But I'll noodle on it.


Friday, June 26, 2015

The Curse of the Novice

If you find yourself in proximity to discussions about education, you might likely know something about the "curse of the expert". In an often cited study, for example:

One group of participants "tapped" a well-known song on a table while another listened and tried to identify the song. Some "tappers" described a rich sensory experience in their minds as they tapped out the melody. Tappers on average estimated that 50% of listeners would identify the specific tune. In reality, only 2.5% of listeners could identify the song.

The curse made an appearance in that experiment when the intimate knowledge of the song they were demonstrating caused "tappers" to greatly overestimate the clarity of those demonstrations from the perspective of novices. And the basic message for education is that, for those in the know, it is all too easy to overestimate how well students are making sense of their instruction.

These findings don't suggest (I'd like to say "obviously") that expertise itself is something to be avoided or that one must take a vow of instructional silence upon obtaining it. Instead, the takeaway seems to be simply that all educators would do well to have some evidence of instructional clarity beyond their own experience and senses—because both of those things can fool you.

The Magic and Mystery of Expertise

Novices, on the other hand, can be cursed in an almost opposite way which we rarely talk about. Rather than seeing the expert's performance or knowledge as much more obvious than it is—as the expert does—novices can interpret the behavior of an expert as being much more magical or mysterious than it really could possibly be.

I'm stricken by this curse every 4 years as I watch the Olympics and wonder how those people possibly do what they do, or when I listen to anyone who moves through mathematics in anything but a plodding, hesitant way like I do, or even when I see things like this . . .

. . . and wonder how people think of this stuff.

Even if I don't know exactly how these experts do what they do, sufficient experience with the world should tell me that their processes, however inconceivable they seem, are describable, technical, and replicable. But, rarely satisfied with the boring truth or with simply not knowing, the curse of the novice compels us to project onto the expert hypotheses about their performance or knowledge—and how they came to acquire it—that are not realistic, that are hand-wavily vague (practice! conceptual understanding!), or that tend to confirm unjustified biases about learning and excellence.

And these hypotheses, in turn, inform how we frame our fundamental mission as educators.

Reverse the Curse

Collectively, educators are both experts and novices in their fields. It makes sense to be watchful for ways in which our knowledge undermines our connection to students, but also mindful of ways in which we romanticize or mythologize those attributes of expertise we want our students to eventually have.

Of course, I'm just a young grasshopper myself about all of this. But I would offer that being less than explicit about the skills and knowledge required to reach expertise strikes me as a perfect example of falling for the curse of the novice—we allow ourselves to be too much in awe of the expert, so all we have to teach is the awe. We deliberately muddy and mystify even the most straightforward of concepts, smugly satisfied that we have not only avoided the curse of the expert but also allowed students to glimpse for a moment the true wonderful magical spirit-world nature of, say, factoring a quadratic expression.

Experts are not better than us. They're just experts. Unless we have good reason to do so, those parts of expertise that are not a mystery to us we shouldn't make a mystery to learners either. And those parts that are a mystery to us . . . we should work to solve those mysteries.

Audio Postscript

Sunday, June 21, 2015


We've hit, early this morning, a bit of a milestone at the MathEdK12 Community, having now a total of more than 10,000 members. That's pretty cool.

I said there that I would write a "gushing thank-you" to celebrate the moment, so let this be it. Thank you to every member and especially to those active regulars who have kept the place buzzing over time (I'm sure I've left off several): +Paul Hartzer, +Mike Aben, +Norman Simon Rodriguez, +Michelle Williams, +David Hallowell, +Lee MacArthur, +Hertz Furniture, +Aner Ben-Artzi, +LThMathematics, +Benjamin Leis, +Addition, +Amadeo Artacho, +Raymond Johnson, +Susan Russo, +John Philip Jones, +Colin Hegarty, +Juan Camarena, +Thom H Gibson, +hemang mehta, +Kyle Pearce, +Caryn Trautz, +Daniel Kaufmann, +John Fitsioris, and our moderator, +John Redden. . .

It's an international community with a lot of diversity of backgrounds and viewpoints and interests and occupations, which is, again, pretty freakin' cool—and, really, essential, vital for any community to be a strong community, especially in education.

What We Are, So Far

Our community is "a forum for all stakeholders--teachers, students, mathematicians, researchers, and laypersons. The only requirement is that you have an interest in mathematics education." Joining is free and, at this point, completely anonymous. Google+ notified me for about the first thousand whenever someone joined. Now I just see the number tick up. I have no clue who new members are.

To join, you can click on the link above (you need a free Google+ account), and then click on "Join Community" when you see the bar below. Nothing happens after that if you don't want it to. You can simply visit and read whenever you want if that's all you want. Welcome.

The primary, baseline activity in the community is sharing information—articles, blog posts, research papers, lesson plans, apps, cartoons, job openings—that's it. Post and go. Discuss. We aggregate quality writing related to math ed on the Web.

And we need more people sharing what they read, write, or create. To do that, you can find the box that looks like the one at the right at the community's home page. Or you can share to the community from just about anywhere. Read here for more details.

Thanks again to our members, and we look forward to seeing more folks sharing more stuff over there in the future.

Sunday, June 14, 2015

The Pre-Testing Effect (and Posterizing)

In their book Make It Stick, authors Peter Brown, Henry Roediger III, and Mark McDaniel have this to say as an introduction to the study we'll look at in this post (along with a few other studies about the benefits of generating solutions [emphasis mine]):

Wrestling with the question, you rack your brain for something that might give you an idea. You may get curious, even stumped or frustrated and acutely aware of the hole in your knowledge that needs filling. When you're then shown the solution, a light goes on. Unsuccessful attempts to solve a problem encourage deep processing of the answer when it is later supplied, creating fertile ground for its encoding, in a way that simply reading the answer cannot. It's better to solve a problem than to memorize a solution. It's better to attempt a solution and supply the incorrect answer than not to make the attempt.

Those last bits in bold are what the current study is about. (And, as you'll hopefully see, they are functionally untrue without a significant amount of qualification.) Following up on results stretching back to 1917 and including those demonstrated by Bjork and Kintsch, which all point to the benefits of testing in improving retention, researchers in the study summarized here looked at the question of whether and to what extent those benefits were present even when participants did poorly during testing.

The Basic Setup(s)

This study actually consisted of 5 separate experiments, each with one basic plan: a group of about 60 undergraduates was given a text to read (one they had never seen before) and divided into two groups. In one group, the "test and study" group, participants were given (before their reading) a 5-question pretest containing fill-in-the-blank or short response items covering material addressed directly in the text. In a second group, participants were simply given an "extended study" time to read. Finally, after reading, both groups were given a 10-question posttest, which, for the "test and study" group, contained 5 of the sentences they saw in the pretest and 5 they did not see. And of course, participants in the "extended study" condition did not previously see any of the 10 questions on the posttest.


The results for each of the experiments were essentially the same, so I'll write just a few notes about the first experiment. I encourage you to read the full paper at the link above.

The bar graph at the right shows the results from Experiment 1. The dark shaded bar tells us that recall was significantly better for those items that were pre-tested (and answered incorrectly) instead of just studied.

This is noteworthy, especially for those critics who often find themselves arguing against all manner of problematized activity in the classroom.

We should also note, however, that there was no significant benefit to recall for items that were not pre-tested. In other words, what we're looking at is more likely a specific effect for specific items, not a general effect of "challenge" or "struggle" before the reading. This is consistent with results across all 5 experiments. Indeed, in Experiment 5 one sees a significant positive effect for testing and failing even over trying to memorize the tested questions; yet here again the benefits were for the specific items pre-tested rather than for the items in general.

Now Watch How Fast I Can Turn All of This Work Into Crap

"Posterizing" like this takes an already somewhat sensationalized statement (just because it's in a book doesn't mean the truth hasn't been sanded down a little) and makes it functionally false by generalizing it and removing the context.

Even if we ignore the fact that the samples in this study were all composed of undergraduates (who, as a group, are not as diverse as the general population) reading texts, the best we could do—and still be intellectually honest—would be something like "if you want to better retain the information you study, being tested on the specific items you want to retain before studying is likely better for you than simply studying longer."

Of course, that's hard to fit on a poster. Richland, L., Kornell, N., & Kao, L. (2009). The pretesting effect: Do unsuccessful retrieval attempts enhance learning? Journal of Experimental Psychology: Applied, 15 (3), 243-257 DOI: 10.1037/a0016496

Saturday, June 6, 2015

Whited Sepulchres

A central—and remarkable—argument in Steven Pinker's recent work, The Better Angels of Our Nature, is that a decline in collective moralization may be a significant cause of the decline over time in human violence. In other words, less morality (or rather, "morality"), less violence:

The world has far too much morality, at least in the sense of activity of people's moral instincts . . . . the biggest categories of motives for homicide are moralistic. In the eyes of the perpetrator, of the murderer, it's capital punishment—killing someone who deserves to die, whether it's a spouse who's unfaithful or someone who dissed him in an argument over a parking space or cheated him in a deal. That's why people kill each other. . . .

The human moral sense does not consist of a desire to maximize well-being, to prevent people from harm. But it is a hodgepodge of motives that include deference to a legitimate authority, conformity to social and community norms, the safeguarding of a pure divine essence against contamination and defilement.

This idea helps me put some language around my discomfort with a lot of education discourse outside the policy and research levels. We moralize far too much about teaching and learning there. Or, rather, we moralize badly too often. Our "ought"s are not centered in the empirical, but in the ideal. Consider:

"Children, go get dressed for dinner. A family should look their best at mealtimes together" is moralizing. "Children, go get dressed for dinner. I have an important client coming over, and I want to impress her" is not. The reasoning attached to the second request is embedded in a real-world reality. He wants to impress a client, so he asks the children to get dressed for dinner. By contrast, the reasoning used to support the first request is rooted in "conformity to social norms." The speaker wants the children to get dressed for dinner because doing so will bring them (and him) closer to an ideal he has in his head. Similarly, "Doctors are gentlemen, and gentlemen's hands are clean" is moralizing—an idealistic "ought" (in this case, an "ought not") untethered to reality.

In education, we have that students shouldn't just sit in rows and listen to a teacher; that they should persevere and fail; that we should be less helpful; that students ought to create on their own, collaborate, and behave like real scientists and mathematicians do. To the extent that these are simply ideals for what students "ought" to be like, disconnected from evidence, they are moralizings: visions of a "pure and divine essence"; pictures in our heads of self-reliant, creative, free, and mature students; pictures that are, however well-intentioned, divorced from reality. It seems to me that in many ways the reforms inspired by these moralizings simply succeed in making children pretend they are accomplished, so that the adults can feel good about themselves.

If, as the research Pinker references suggests, our moral instincts are not as well calibrated as we think they are for modern life, and the population of "ought"s in our community is not controlled by predatory "is"s delivered by scientific thinking, we should be, at the least, increasingly wary of educational moralizing rather than increasingly comfortable with it.

Image mask: Ivar Gullord

Audio Postscript

Saturday, May 23, 2015

A Meditation on Ratio

meditating on vipassana course in ukraine

What do you think a ratio is? I emphasize "think" because I'd like you to be interested only in the fragmentary pictures conjured by the question—you want to be aware of what you think a ratio is, not what you think you know about ratios, which are two different thinks.

So, perhaps try now to answer the question, but don't censor your first "thinks" here. Pay close attention to what thoughts arise, but don't try to change them into anything else. And if very few thoughts arise, simply notice that too. Don't try to manufacture thoughts about this. The idea is to simply be aware of your initial impressions about a particular concept, not to judge what's coming.

Only after you have noticed what you have noticed about your thoughts about 'ratio' can you then set this bubble of incomplete thoughts, bits of pictures, and perhaps even some emotional reactions in front of you for criticism, editing, and analysis.

Good. So Now We Share Our Noticings.

I'd like to share with you one noticing of mine about the concept of ratio that has come out of something like this 'math meditation' described above, and it is my hope—and my sense—that you will be able to relate to it:

There is a 'twoness' about ratio that shouldn't be there.

That is, my impressions—my "first thinks"—about ratio are of two parts, two quantities, and I have to work a little to see that 'ratio' has a meaning and identity as a single object. Incidentally, by contrast, 'sum' and 'product' each have immediate meaning to me as individual things. One is the result of addition and the other is the result of multiplication. They are each single values, and the work involved is in the other direction: I have to work a little for 'sum' and a little more for 'product' to see these as being decomposed into two or more parts. This is as it should be. When I think mathematically, my primary mental access to these concepts should be as coherent units, not as collections of parts. Analogously, if my first access to 'cat' is "see ay tee" or "whiskers, claws, tail" and I have to work to identify 'cat' as a single thing, my cognition about this animal will be impaired—a deficit that will become more obvious the more complex is my work with cat concepts.

This seems to be the situation we're in with regard to multiplicative reasoning in particular in schooling, beginning possibly with the concept of ratio (but likely even "before" that with the concept of multiplication). The primary psychological relationship we allow students to have with ratio is one in which a ratio is two things rather than one. If you doubt this, perhaps you can imagine giving students (or even adults) a simple prompt to write 5 ratios. How many do you think would write a whole number (not written in fraction form) as one of their responses? I would expect close to none. But perhaps another good test is to watch the video here and notice whether something about it goes against your grain. That feeling—I would suggest—is likely the result of the collision of the two notions of ratio: the one we have primary access to, and the one that would allow for a more productive relationship with this concept.

I could be totally wrong, of course. You should just imagine that written on a sign and slung over every post here.

Sunday, May 17, 2015

Worked Examples for Algebra


The Common Core State Standards for Mathematics (CCSS-M) include not only a list of knowledge objectives at each grade level, such as 5.OA.1: "Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols", but also a list of 8 "mathematical practice" standards, among which are "1. Make sense of problems and persevere in solving them" and "3. Construct viable arguments and critique the reasoning of others."

I should quickly point out the obvious, apparently, that nowhere in the Practice Standards does it say "do gallery walks" or "have students collaborate on projects." There isn't just one interpretation of these standards that is correct, even though our collective practice tends to congeal around a few interpretations, making those interpretations appear to be the "correct" ones.

Which brings me to the lonely and unfortunately out-of-fashion worked example, the centerpiece of a 2013 action study by Booth, et al. designed to improve students' algebra performance.

Using Example Problems, Part I

In the first experiment of the study, students in the control condition were given their normal suite of guided practice problems (on the topic of solving two-step equations), while students in the three treatment conditions were also given either (a) correctly worked-out examples, (b) incorrectly worked-out examples, or (c) both correctly and incorrectly worked-out examples. In each of the three treatment conditions, students were not only shown an example problem, marked as correctly worked out or incorrectly worked out, but were also asked to explain "what was done in the example and why the strategy was either correct or incorrect."

This act of not only reading the worked examples but interacting with them by explaining what was happening and why is called self-explanation:

Explaining instructional material has been shown to improve learning by forcing students to make their new knowledge explicit (Chi, 2000; Roy & Chi, 2005). Logically, it then follows that asking students to explain examples could further improve their learning over having them simply study examples. Indeed, Renkl, Stark, Gruber, and Mandl (1998) found that including self-explanation prompts with examples of interest calculation problems fosters both near transfer of problem solving skills (i.e., solving the type of problem they practiced) and far transfer (i.e., solving problems that are related, but not isomorphic to those practiced (Haskell, 2001)).

The results from this experiment (on 116 Algebra I students across 9 classrooms) suggested that, unsurprisingly, all three treatment conditions were superior to the control on measures of conceptual knowledge and procedural transfer. However, none of the three examples-plus-explanations treatment groups performed significantly better than the other ones.

Using Example Problems, Part II

In order to further distinguish between the three treatment conditions in Experiment 1, researchers conducted a second experiment with a different sample of students, this time 8th grade Algebra I students. I encourage readers to look at the study for the methodological details, as I will only describe, in general, the results.

The strongest consistent result from this experiment came from the treatment group given a combination of correctly and incorrectly worked-out examples (along with prompts for explanation). Here, students showed significantly fewer encoding errors of conceptual features of the problems and significantly greater conceptual knowledge of "the meaning of the equals sign, negative signs, and like terms"—features identified as critical for success in algebra from prior research.

The Best of Both Worlds

To me, worked examples with self-explanation combine the best of both worlds: (1) explicit teaching and (2) cognitive engagement. And both are not only represented in the research, as shown above, but are consistent with the CCSS-M Practice Standards. While we should focus efforts to improve both of these aspects of education, we should not do so by de-emphasizing either one.

Update: This favorably timed blog post throws some theoretical and philosophical weight onto the conclusion in my last paragraph above.

Audio Postscript

Booth, J., Lange, K., Koedinger, K., & Newton, K. (2013). Using example problems to improve student learning in algebra: Differentiating between correct and incorrect examples Learning and Instruction, 25, 24-34 DOI: 10.1016/j.learninstruc.2012.11.002

Friday, April 24, 2015

Letting Go of Free Will

The most popular conception of free will—a notion that lies mostly unexamined until it becomes necessary to defend it—is that there is something inside our minds (a "ghost in the machine") that, as Steven Pinker says, "reads the TV screen of the senses and pushes buttons and pulls levers of behavior."

While it goes mostly without saying (I hope) that this kind of free will is not real, nor even possible, there are still plenty of things to be said about the implications of this truth—in particular, implications regarding schooling—that do not sufficiently affect our thinking.

"You Are Not Controlling the Storm, and You Are Not Lost in It. You Are the Storm."

The best way to watch the idea of free will disappear before your eyes is to go looking for it. Make a simple choice in this moment—to turn your head to the right or to the left, say. If I ask what choice you made, you might say left or right, but you could also say that you chose to move one of your legs or to wink instead. Or you may have decided to not do anything differently at all as a result of my request. Ultimately, none of these possible individual differences matter to the analysis, because you did not cause your brain to produce the results, whatever they were.

If you believe you did cause this result—it certainly feels like you did—and if you are committed to describing a non-magical etiology of your behavior, you must account for the neurons that "you" controlled somehow to make the decision. If you succeed, you must then describe what caused the "you" neurons to do "their" controlling. I hope you can see that even my description of what is required does not cohere, and the job itself reduces to absurdity quickly.

Whatever it is you believe you have that can be called "free will," it is not the ability to locate yourself—your thinking, your behavior—outside of any storm of prior causes. Your decision to turn your head or move your leg or give me the finger or ignore me was ultimately not controlled by you. You could not possibly have done what it did not occur to you to do in the first place, and, second, you can give no reasonable account of why one move occurred to you while another didn't. It seems that only under a legal, compatibilist view can you do things "of your own free will."

Some Things Change, Some Stay the Same . . .

Obviously, if we are not fleshy robots operated by mysterious incorporeal homunculi, then neither are kids. Yet we all share this subjective delusion that each of us is this homunculus, living behind our eyes. So it is worth wondering what effects, if any, the illusion of free will in ourselves (and the assignation of the same to others) has on our "normal" perspectives regarding teaching and learning.

For many, abandoning the notion of free will—accepting its absence in their bones and down to their toes—would change the way they look at punishing students for misbehavior. At the very least, a strong collective recognition of the illusion of free will would remove the social cover adults in schools receive when they punish children for no good reason other than that "they deserved it." They don't simply "deserve" it. Not ever. That view makes no sense.

Yet, similarly it makes no sense to take credit for achievements. We should by no means feel compelled to disown completely the rewards that we accrue by virtue of our hard work or planning or even innate abilities, but removing the illusion of free will places these rewards in the proper perspective. You are fortunate to have achieved what you have and unfortunate to have missed out on some achievements. Pride really has no place. Who is there to be proud? What could she proud of? And as we did with punishment, we can find a similar clarity with the way we reward our students when we are not confused by free will. (See Carol Dweck's work on fixed and growth mindsets.)

We Are All Connected

It is hard to underestimate the confusion that can be sown by the illusion of free will when it comes to teaching and learning. I think Sam Harris says what I want to convey on this point more beautifully:

Some of you might think this sounds depressing. But, it's actually incredibly freeing to see life this way. It does take something away from life. What it takes away from life is an egocentric view of life. We're not truly separate. We are linked to one another; we are linked to the world; we are linked to our past and to history. And what we do actually matters, because of that linkage, because of the permeability, because of the fact that we can't be the true locus of responsibility. That's what makes it all matter.

We don't own our thoughts. They are not ours to begin with. As a student, my thoughts have proximate causes in my past experiences and the thoughts of my peers and teachers. But these thoughts didn't "belong" to anyone along the way. And they don't "belong" to me now.

So why are we afraid to share our knowledge of the world with students? Because we believe that each of them has some mysterious inner ghost that is muted by taking on board the thoughts of "others"? This is silly. While it definitely makes sense to ask students to practice generating ideas with little assistance, it doesn't make sense to draw a qualitative distinction between those ideas and knowledge from the outside world. There is no distinction. The thoughts I'm sharing with you here are now yours, for a moment, and in some form. "Your" internal thoughts appear to you in almost exactly the same way.

And, on the other hand, why are we so afraid of giving our students time and space to explore and succeed and fail? Because we see the world as a collection of atomized individuals, hoarding particular bits of knowledge and expertise in order to sell them for a price? Again, while it makes sense to prepare students for the reality they will likely face as adults, it doesn't make sense to enforce a "knowledge capitalism" on them, especially when that system rests on a delusion.

Audio Postscript

Saturday, April 11, 2015

Telling Vs. No Telling

So, with that in mind, let's move on to just one of the dichotomies in education, that of "telling" vs. "no telling," and I hope the reader will forgive my leaving Clarke's paper behind. I recommend it to you for its international perspective on what we discuss below.

"Reports of My Death Have Been Greatly Exaggerated"

We should start with something that educators know but people outside of education may not: there can be a bit of an incongruity, shall we say, between what teachers want to happen in their classrooms, what they say happens in their classrooms, and what actually happens there. Given how we talk and what we talk about on social media—and even in face-to-face conversations—and the sensationalist tendencies of media reports about education, an outsider could be forgiven, I think, for assuming that teachers have been moving en masse away from the practice of explicit instruction.

There is a large body of research which would suggest that this assumption is almost certainly "greatly exaggerated."

Typical of this research is a small 2004 study (PDF download) in the U.K. which found that primary classrooms in England remained places full of teacher talk and "low-level" responding by students, despite intentions outlined in the 1998–1999 National Literacy and National Numeracy Strategies. The graph at the right, from the study, shows the categories of discourse observed and a sense of their relative frequencies.

John Goodlad made a similar and more impactful observation in his much larger study of over 1,000 classrooms across the U.S. in the mid-80s (I take this quotation from the 2013 edition of John Hattie's book Visible Learning, where more of the aforementioned research is cited):

In effect, then, the modal classroom configurations which we observed looked like this: the teacher explaining or lecturing to the total class or a single student, occasionally asking questions requiring factual answers; . . . students listening or appearing to listen to the teacher and occasionally responding to the teacher's questions; students working individually at their desks on reading or writing assignments.

Thus, despite what more conspiracy-oriented opponents of "no telling" sometimes suggest, the monotonic din of "understanding" and "guide on the side" and "collaboration" we hear today—and have heard for decades—is not the sound of a worldview that has, in practice, taken over education. Rather, it is one of a seemingly quixotic struggle on the part of educators to nudge each other—to open up more space in class for students to exercise independent and critical thinking. This a finite space, and something has to give way.

Research Overwhelmingly Supports Explicit Instruction

Teacher as
dTeacher as Facilitatord
Teaching students self-verbalization0.76Inductive Teaching0.33
Teacher clarity0.75Simulation and gaming0.32
Reciprocal teaching0.74Inquiry-based teaching0.31
Feedback0.74Smaller classes0.21
Metacognitive strategies0.67Individualised instruction0.22
Direct instruction0.59Web-based learning0.18
Mastery learning0.57Problem-based learning0.15
Providing worked examples0.57Discovery method (math)0.11

On the other hand, it is manifestly clear from the research literature that, when student achievement is the goal, explicit instruction has generally outperformed its less explicit counterpart.

The table at the left, taken from Hattie's book referenced above, directly compares the effect sizes of various explicit and indirect instructional protocols, gathered and interpreted across a number of different meta-analyses in the literature.

Results like these are not limited to the K–12 space, nor do they involve only the teaching of lower-level skills or teaching in only well-structured domains, such as mathematics. These are robust results across many studies and over long periods of time.

And while research supporting less explicit instructional techniques is out there (as obviously Hattie's results also attest), there is much less of it—and certainly far less than one would expect given the sheer volume of rhetoric in support of such strategies. On this point, it is worth quoting Sigmund Tobias at some length, from his summarizing chapter in the 2009 book Constructivist Instruction: Success or Failure?:

When the AERA 2007 debate was organized, I described myself as an eclectic with respect to whether constructivist instruction was a success or failure, a position I also took in print earlier (Tobias, 1992). The constructivist approach of immersing students in real problems and having them figure out solutions was intuitively appealing. It seemed reasonable that students would feel more motivated to engage in such activities than in those occurring in traditional classrooms. It was, therefore, disappointing to find so little research documenting increased motivation for constructivist activities.

A personal note may be useful here. My Ph.D. was in clinical psychology at the time when projective diagnostic techniques in general, and the Rorschach in particular, were receiving a good deal of criticism. The logic for these techniques was compelling and it seemed reasonable that people’s personality would have a major impact on their interpretation of ambiguous stimuli. Unfortunately, the empirical evidence in support of the validity of projective techniques was largely negative. They are now a minor element in the training of clinical psychologists, except for a few hamlets here or there that still specialize in teaching about projective techniques.

The example of projective techniques seems similar to the issues raised about constructivist instruction. A careful reading and re-reading of all the chapters in this book, and the related literature, has indicated to me that there is stimulating rhetoric for the constructivist position, but relatively little research supporting it. For example, it is encouraging to see that Schwartz et al. (this volume) are conducting research on their hypothesis that constructivist instruction is better for preparing individuals for future learning. Unfortunately, as they acknowledge, there is too little research documenting that hypothesis. As suggested above, such research requires more complex procedures and is more time consuming, for both the researcher and the participants, than procedures advocated by supporters of explicit instruction. However, without supporting research these remain merely a set of interesting hypotheses.

In comparison to constructivists, advocates for explicit instruction seem to justify their recommendations more by references to research than rhetoric. Constructivist approaches have been advocated vigorously for almost two decades now, and it is surprising to find how little research they have stimulated during that time. If constructivist instruction were evaluated by the same criterion that Hilgard (1964) applied to Gestalt psychology, the paucity of research stimulated by that paradigm should be a cause for concern for supporters of constructivist views.

Both the Problem and the Solution

So, it seems that while a "telling" orientation is better supported by research, it is also identified as a barrier, if not the barrier, to progress. And it seems that a lot of our day-to-day struggle with the issue centers around the negative consequences of continued unsuccessful attempts at resolving this paradox.

Yet perhaps we should see that this is not a paradox at all. Of course it is a problem when students learn to rely heavily on explicit instruction to make up their thinking, and it is perfectly appropriate to find ways of punching holes in teacher talk time to reduce the possibility of this dependency. But we could also research ways of tackling this explicitly—differentiating ways in which explicit instruction can solicit student inquiry or creativity and ways in which it promotes rule following, for example.

It is at least worth considering that some of our problems—particularly in mathematics education—have less to do with explicit instruction and more to do with bad explicit instruction. If dealing with instructional problems head on is more effective (even those that are "high level," such as creativity and critical thinking), then we should be making the sacrifices necessary to give teachers the resources and training required to meet those challenges, explicitly.

Thursday, April 2, 2015

Teachers Should Be "Poised and Articulate"

Resurrecting an old post from 2009 or 2007 or some year around then:

At the end of what seems like a long chain of events, I asked, and answered yes to, this question about professionalizing teacher practice:

Is there one or more cultural "teaching scripts" that might tend to stymie the practice of collecting and critically analyzing specific best-practice knowledge linked to academic outcomes?

The question was, at the time, the end result of my thinking about Jenny D.'s terrific post, Chris Correa's input on the subject, and ideas presented by different commenters.

Regardless whether yes is the correct answer to that question or not, I'd like to follow up and suggest one script that I think may be a significant culprit. Of course, in doing so, I will be making a solid leap away from firm ground, because cultural scripts are constructs that one can observe only indirectly, if at all:

[Cultural scripts] are not proposed as rules of behaviour but as rules of interpretation and evaluation. It is open to individuals in concrete situations whether to follow (or appear to follow) culturally endorsed principles, and if so, to what extent; or whether to manipulate them, defy them, subvert them, rebel against them, play creatively with them, etc. Whether or not cultural scripts are being followed in behavioural terms, however, the claim is that they constitute a kind of shared interpretive "background."

One part of an "interpretive background" that I would suggest we share with regard to the idea of teaching is this: Teaching is "ethotic" and "pathotic" persuasion.

That is, the input of teaching is gauged in terms of the character of teachers (ethos) and their ability to navigate and control the emotional, cognitive-psychological, and interpersonal dynamics of learning (pathos). "Logetic" persuasion (logos)—which involves consideration of the presentation and organization of content in isolation--is really not part of the script for teaching or is, at best, completely overshadowed.

Consider these ethotic/pathotic selection criteria for the National Teacher of the Year award as a bit of indirect evidence for the existence of this script:

  • Inspire students of all backgrounds and abilities to learn.
  • Have the respect and admiration of students, parents, and colleagues.
  • Play an active and useful role in the community as well as in the school.
  • Be poised, articulate, and possess the energy to withstand a taxing schedule.

In short, we tend to view better teaching exclusively as a function of better people (more compassionate or caring or moral or humane, etc.), and almost never as a function of better technical information ("mere technicians")--a script which makes the compilation and dispensation of best-practice knowledge nearly unimaginable.